FULL SYLLABUS TEST
 By: OP GUPTA (+91-9650 350 480)

Time Allowed: 120 Minutes
Subject : MATHEMATICS
Class X (SA - 01)

Q01. A) Find value of the following expression:

$$
\sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ}+\sin ^{2} 15^{\circ}+\ldots+\sin ^{2} 85^{\circ} .
$$

B) If $2 \sin (2 x-15)=\sqrt{3}$ then, find the value of:

$$
\sin ^{2}(2 x+15)+\tan ^{2}(2 x-15) .
$$

C) Simplify the expression given below:

$$
\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}-10 \cos ^{2} 90^{\circ} .
$$

Q02. Let $p=\sec \theta+\tan \theta$, then find the value of the expression $\frac{1}{p}+p$.
Q03. A) If A, B, C are interior angles of $\triangle A B C$, then find the value of the following expression:

$$
\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right) \cos \frac{\mathrm{A}}{2}+\cos \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right) \sin \frac{\mathrm{A}}{2} .
$$

B) In an acute angled $\triangle A B C$, if $\sin (A+B-C)=\frac{1}{2}$ and $\cos (B+C-A)=\frac{1}{\sqrt{2}}$ then, find the angles A, B and C .
C) If θ is an acute angle and $5 \sin ^{2} \theta+\cos ^{2} \theta=4$, then find the value of angle ' θ '.
Q04. A mobile company charges a fixed amount as monthly rental which includes 100 minutes free per month and charges a fixed amount then after for every additional minute. Reva paid ${ }^{4} 33$ for 370 minutes and Ravi paid 398 for 300 minutes. Find the bill amount under the same plan, if Hina uses 400 minutes.
Q05. Solve the given system of equations:

$$
\frac{2}{3 x+2 y}+\frac{3}{3 x-2 y}=\frac{17}{5}, \frac{5}{3 x+2 y}+\frac{1}{3 x-2 y}=2 .
$$

Q06. Obtain all the zeroes of the polynomial $2 x^{4}-2 x^{3}-7 x^{2}+3 x+6$ if $\left(x \pm \sqrt{\frac{3}{2}}\right)$ are two known factors of the given polynomial..
Q07. A) If α and β are zeroes of $2 x^{2}+7 x-3$ then, find the sum of reciprocal of the zeroes.
B) If sum of the zeroes of $k x^{2}+3 k+2 x$ is equal to their product then, write the value of k.
Q08. Show that one and only one of $n, n+2, n+4$ is divisible by 3 (n is any positive integer).
Q09. Verify if (80) ${ }^{n}$ can end with the digit zero for some value of n.
Q10. State and prove basic proportionality theorem. Who gave this theorem?

Max. Marks: 60
Q11. Find the missing frequency f in the Table 1 if the mean is known to be 18. Hence find the mode.

Daily allowance Number of children

$11-13$	7
$13-15$	6
$15-17$	9
$17-19$	13
$19-21$	f
$21-23$	5
$23-25$	4

Table 1
Q12. Find the median of the following data of Table 2.

Age (in years) Number of patients

$5-15$	6
$15-25$	11
$25-35$	21
$35-45$	23
$45-55$	14
$55-65$	5

Table 2
Q13. Prove the following:

$$
\frac{\cos A}{1-\tan A}+\frac{\cos A}{1-\cot A}=\cos A, A \neq 45^{\circ} .
$$

Q14. If $\sin \alpha=a \sin \beta$ and $\tan \alpha=b \tan \beta$ then, prove that: $\cos ^{2} \alpha=\frac{a^{2}-1}{b^{2}-1}$.
Q15. Prove the following:

$$
\left(\frac{1+\sin \theta-\cos \theta}{1+\sin \theta+\cos \theta}\right)^{2}=\frac{1-\cos \theta}{1+\cos \theta} .
$$

Q16. Prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side.
Q17. ABCD is a trapezium in which $A B \| D C$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$ Q18. If a line intersects sides $A B$ and $A C$ of a $\triangle A B C$ at D and E respectively and is parallel to BC , prove that $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}$.

Visit at: www.theOPGupta.WordPress.com
 www.theopgupta.blogspot.com

