FULL SYLLABUS TEST By: OP GUPTA (+91–9650 350 480)

Time Allowed: 120 Minutes

Time Anowed. 120 Windles
Q01. A) Find value of the following expression:
$\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + + \sin^2 85^\circ.$
B) If $2\sin(2x-15) = \sqrt{3}$ then, find the value of:
$\sin^2(2x+15) + \tan^2(2x-15).$
C) Simplify the expression given below:
$\tan^2 60^\circ + 4\cos^2 45^\circ + 3\sec^2 30^\circ - 10\cos^2 90^\circ$.
Q02. Let $p = \sec \theta + \tan \theta$, then find the value of
the expression $\frac{1}{p} + p$.
Q03. A) If A, B, C are interior angles of $\triangle ABC$,
then find the value of the following expression:
$\sin\left(\frac{B+C}{2}\right)\cos\frac{A}{2} + \cos\left(\frac{B+C}{2}\right)\sin\frac{A}{2}.$
B) In an acute angled $\triangle ABC$, if $sin(A+B-C) = \frac{1}{2}$
and $\cos(B + C - A) = \frac{1}{\sqrt{2}}$ then, find the angles A, B
and C.
C) If θ is an acute angle and $5\sin^2\theta + \cos^2\theta = 4$,
then find the value of angle ' θ '.
Q04. A mobile company charges a fixed amount
as monthly rental which includes 100 minutes free
per month and charges a fixed amount then after
for every additional minute. Reva paid `433 for
370 minutes and Ravi paid `398 for 300 minutes.
Find the bill amount under the same plan, if Hina uses 400 minutes.
Q05. Solve the given system of equations: $2 - 2 - 17 - 5 - 1$
$\frac{2}{3x+2y} + \frac{3}{3x-2y} = \frac{17}{5}, \frac{5}{3x+2y} + \frac{1}{3x-2y} = 2.$
O06. Obtain all the zeroes of the polynomial
$\mathbf{V}_{\mathbf{V}\mathbf{V}}$, $\mathbf{V}_{\mathbf{V}}$ and $\mathbf{U}_{\mathbf{V}}$ and $\mathbf{U}_{\mathbf{V}}$ and $\mathbf{U}_{\mathbf{V}}$

Q06. Obtain all the zeroes of the polynomial
$$2x^4 - 2x^3 - 7x^2 + 3x + 6$$
 if $\left(x \pm \sqrt{\frac{3}{2}}\right)$ are two known

factors of the given polynomial ..

Q07. A) If α and β are zeroes of $2x^2 + 7x - 3$ then, find the sum of reciprocal of the zeroes.

B) If sum of the zeroes of $kx^2 + 3k + 2x$ is equal to their product then, write the value of k.

Q08. Show that one and only one of n, n+2, n+4 is divisible by 3 (n is any positive integer).

Q09. Verify if $(80)^n$ can end with the digit zero for some value of n.

Q10. State and prove basic proportionality theorem. Who gave this theorem?

Subject : MATHEMATICS Class X (SA - 01)

Max. Marks: 60

Q11. Find the missing frequency f in the Table 1 if the mean is known to be 18. Hence find the mode.

Daily allowance Number of children

•	
11-13	7
13-15	6
15-17	9
17-19	13
19-21	f
21-23	5
23-25	4
the second se	

Table 1

Q12. Find the median of the following data of Table 2.

Age (in years) Number of patients

	5-15	6
	15-25	11
	25-35	21
5	35-45	23
4	45-55	14
	55-65	5

Table 2

Q13. Prove the following:

 $\frac{\cos A}{1 - \tan A} + \frac{\cos A}{1 - \cot A} = \cos A, A \neq 45^{\circ}.$ **Q14.** If $\sin \alpha = a \sin \beta$ and $\tan \alpha = b \tan \beta$

then, prove that: $\cos^2 \alpha = \frac{a^2 - 1}{b^2 - 1}$.

Q15. Prove the following:

 $\left(\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}\right)^2 = \frac{1-\cos\theta}{1+\cos\theta}.$

Q16. Prove that the line joining the midpoints of any two sides of a triangle is parallel to the third side.

Q17. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$.

Q18. If a line intersects sides AB and AC of a \triangle ABC at D and E respectively and is

parallel to BC, prove that
$$\frac{AD}{AB} = \frac{AE}{AC}$$
.

Visit at: www.theOPGupta.WordPress.com www.theopgupta.blogspot.com